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1 minitask5

1.1 SLAM localiser

Localises the robot’s position and orientation and translates this into world space.

Publishes to ”/minitask5/pose” using Pose2D.

Subscribes to

• /odom using Odometry

Class variables

• pose (Pose2D) : Stores the current position and orientation of the robot in world space

• buffer (tf2 ros.Buffer) : A buffer of transform callbacks

• listener (tf2 ros.TransformListener) : Listener object that sends transforms to the buffer with
time stamps

Subscriber callback methods

• odom callback : When odometry publishes a message, we translate that relative to the map
transform to convert it to world space. This includes position and orientation.

Node methods

• SLAM localiser() : The constructor for this node

1.2 frontier

Finds the shortest path to the nearest unexplored area

Publishes to ”/minitask5/path” using Path.
Publishes to ”/minitask5/cost map” using OccupanyGrid. (For RViz only)

Subscribes to:

• /map using OccupancryGrid

• /minitask5/pose using Pose2D

• /minitask5/obstacle grid using OccupancryGrid

• /minitask5/vision map using OccupancryGrid

Class variables

• rate (rospy.Rate) : The rate at which we publish messages

• resolution (float) : Size in m of a single grid cell in the maps

• map width (float) : Width of the map in m

• map height (float) : Height of the map in m
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• pose (Pose2D) : Position and orientation of the robot in world space

• cost map (OccupancyGrid) : Inflated map of the walls to mark how safe areas are to drive within

• obstacle map (OccupancyGrid) : Map of all the obstacles that can’t been seen with lidar

• vision map (OccupancyGrid) : Map of the areas that have been looked at with the robot’s
camera

Subscriber callback methods

• map callback : Receives the global map and calculates an inflated cost map and stores this for
later use

• pose callback : Stores the pose for later use

• obstacle grid callback : Stores the obstacle grid that was obtained with the camera

• vision map callback : Stores the map of seen areas of the map

Node methods

• frontier() : The constructor for this node

• find path () (Path) : Uses the member variables for the most recent maps and pose to find the
shortest path to the closest frontier

• flood fill (start cell, fill grid, cost map, ignore threshold, target threshold) (cell) :
Performs a flood fill to locate the position of the nearest target cell

• pathfind (map, start, end, threshold, allow unknowns) ((x,y)[ ]) : Uses A* algorithm to
find the shortest path from the start to end location through the given map. This can’t travel
through anything above the threshold, but has the option to travel through unknown areas based
on allow unknowns

1.3 localization

(Deprecated) Localised the robot within the map.

Publishes to ”/minitask5/grid pose” using GridPose.
Publishes to ”/minitask5/localization map” using OccupanyGrid. (For RViz only)

Subscribes to:

• /minitask5/map using OccupancryGrid

• /scan using LaserScan

• /odom using Odometry

Class variables

• rate (rospy.Rate) : The rate at which we publish messages

• map (OccupancyGrid) : The global map

• grid pose (GridPose) : Position of the robot within map space
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• grid (OccupancyGrid) : The local map visible with Lidar

• pose (Pose2D) : Position and orientation of the robot in world space

Subscriber callback methods

• map callback : Receives the global map and stores it for later use

• lidar callback : Given the local LaserScan, create a local map and find where in the local map
looks most similar to localise on the centre.

• odom callback : Stores the estimated world position based on odometry

Node methods

• localization() : The constructor for this node

1.4 mapping

(Deprecated) Build up a global map as the robot moves.

Publishes to ”/minitask5/map” using OccupancryGrid
Publishes to ”/minitask5/localization map” using OccupanyGrid. (For RViz only)

Subscribes to:

• /scan using LaserScan

• /odom using Odometry

Class variables

• map rate (rospy.Rate) : The rate at which we publish messages.

• pose (Pose2D) : Position and orientation of the robot in world space

• grid (OccupancyGrid) : The local map visible with Lidar

Subscriber callback methods

• lidar callback : Given the local LaserScan, add to the global map

• odom callback : Stores the world position of the robot

Node methods

• mapping() : The constructor for this node

1.5 movement

Controls the movement of the robot to follow the given path by publishing to cmd vel

Publishes to ”/cmd vel” using Twist.

Subscribes to:

• /minitask5/path using Path
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• /minitask5/pose using Pose2D

Class variables

• path (Path) : The path to follow

• rate (rospy.Rate) : The rate as which we publish messages

• pose (Pose2D) : Position and orientation of the robot in world space

• max angular (float) : The maximum m/s we permit rotations

• max linear (float) : The maximum m/s we permit linear movements

Subscriber callback methods

• pose callback : Stores the pose for later use

Node methods

• movement() : The constructor for this node

1.6 object detection

Uses the camera to detect the items we are looking for within the scene and mark them in RViz using
MarkerArray

Publishes to ”/minitask5/markers” using MarkerArray.

Subscribes to:

• camera/rgb/image raw using Image

• camera/color/image raw using Image

• camera/depth/image raw using Image

• camera/aligned depth to color/image raw using Image

• minitask5/pose using Pose2D

Class variables

• map width (float) : Width in m of the map

• map height (float) : Height in m of the map

• real (boolean) : If the node is running on a real robot or not

• bridge (CvBridge) : Used to convert camera images into openCV data

• depth image (Image) : The depth image returned by the camera

• pose (Pose2D) : The position and orientation of the robot

• rate (rospy.Rate) : The frequency we publish MarkerArray

• markers (MarkerArray) : Array of markers that identify the seen objects
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• resolution (float) : Size in m of each grid cell in the maps

• green grid (OccupancyGrid) : Probability grid of suspected green objects

• red grid (OccupancyGrid) : Probability grid of suspected red objects

• marker pub (rospy.Publisher) : Publisher for sending marker array to RViz

Subscriber callback methods

• color image callback : Finds objects within the color image, samples the most recent depth at
the centre of the objects, and calculates there location in the world. This is then converted into
grid space and increases the probability of an object there within our object detection grids. Only
works on objects above a certain size to remove noise.

• depth image callback : Converts the depth image into the correct format and stores this in a
member variable for later

• pose callback : Stores the pose for later use

Node methods

• object detection() () : The constructor for this node

• update markers() () : Sets the MarkerArray using both the green and red probability grids

• get markers(grid, start id, ns, color) (MarkerArray) : Thresholds the given grid, and then
finds the connected components within it. The centre of each connected component is the centre
of the marker. The marker id’s start at ”start id”, are placed within the namespace ”ns” and are
of the color ”color”

• to world(origin, resolution, grid coord) (Point) : Converts the grid coord into world space
around the map origin and given the resolution

• to grid(origin, resolution, world coord) (Point) : Converts the world coord into grid space
around the map origin and given the resolution

1.7 obstacle detection

Uses the camera to detect the obstacles that should be avoided but can’t be seen with the lidar

Publishes to ”/minitask5/obstacle grid” using OccupancyGrid.

Subscribes to:

• camera/rgb/image raw using Image

• camera/color/image raw using Image

• camera/depth/image raw using Image

• camera/aligned depth to color/image raw using Image

• minitask5/pose using Pose2D

• map using OccupancyGrid

Class variables
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• map width (float) : Width in m of the map

• map height (float) : Height in m of the map

• real (boolean) : If the node is running on a real robot or not

• bridge (CvBridge) : Used to convert camera images into openCV data

• depth image (Image) : The depth image returned by the camera

• pose (Pose2D) : The position and orientation of the robot

• rate (rospy.Rate) : The frequency we publish MarkerArray

• resolution (float) : Size in m of each grid cell in the maps

• map (OccupancyGrid) : Map of the locations we have seen to be unsafe through the camera

• map pub (rospy.Publisher) : Publishes the grid of objects to avoid

Subscriber callback methods

• color image callback : Finds any obstacles within the image and samples the most recent
depth image at each pixel of the obstacle objects. Each is then converted into grid space using the
robots position, orientation, location within the image, and depth. This erodes to remove noise
and reduce issues with synchronisation issues

• depth image callback : Converts the depth image into the correct format and stores this in a
member variable for later

• pose callback : Stores the pose for later use

• map callback : Caches the size and resolution of the costmap so that we ensure they are
perfectly lined up

Node methods

• obstacle detection() () : The constructor for this node

1.8 vision mapping

Builds up a map of the locations the robot has seen through the camera

Publishes to ”/minitask5/vision map” using OccupancyGrid.

Subscribes to:

• scan using LaserScan

• map using OccupancyGrid

• minitask5/pose using Pose2D

Class variables

• real (boolean) : True if the node is running on a real robot

• rate (rospy.Rate) : The frequency we publish the vision map
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• pose (Pose2D) : The position and orientation of the robot

• map (OccupancyGrid) : Map of the locations we have seen

Subscriber callback methods

• lidar callback : Builds up the map of regions we have seen using Lidar to determine the distance
to objects that could be blocking the view. This is only frontal cone based on the realsense2 FoV.

• pose callback : Caches the position and orientation of the robot

• map callback : The first time this is called, it creates the vision map of the exact same size and
resolution as the costmap to ensure they are perfectly aligned

Node methods

• vision mapping() () : The constructor for this node

1.9 util

Provides a number of utility functions that are used throughout the different nodes

Methods

• get cell(map, coord) (float) : Gets the cell from an occupancy grid using it’s internal size.

• set cell(map, coord, value) () : Sets the value in the occupancy grid of the given cell to the
value provided.

• to grid(map, world coord) ((x,y) : Converts a world space coordinate to grid space.

• to world(map, grid coord) (Point) : Converts a grid space coordinate to world space.

• convert coord(src, dst, grid coord) ((x,y)) : Converts a coordinate from one grid space to
another.

• get line(start, end) ((x,y)[]) : Given a start and end point of coordinates, find all coordinates
on the line that connects them.

• lerp(x1, x2, y1, y2, x) (float) : Linear mapping of value x from between ranges (x1,x2) to
(y1,y2).

• getangle(src, dst) (float) : Calculates the angle in world space between 2 coordinates.

• inradius(src, dst, radius) (boolean) : Return true if the distance between the src and dst
points are less than the given radius.

• quaternion from theta(theta) (Quaternion) : Converts a Euler angle to a quaternion object.
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2 Architecture & Behaviour

Figure 1: Architecture Diagram

The main flow of data throughout our nodes can be see in [Figure 1]. We have designed and built it as
such so that there each node has a single responsibility as is recommended with ROS programming.
Additionally, each node only publishes to a single topic (other than for visualisation). The entirety of
this project was completed in unison using paired programming, so that the emergent behaviour can be
fully understood and design decisions are fully informed. Therefore I will explain the design,
implementation and testing completed for section.
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2.1 Data Collection

The first nodes that are worth discussion are those who take input data from the robot and prepare
this for decision making. These are all the nodes that subscribe to the Image, Depth Image and
LaserScan topics.

2.1.1 Image & Depth Image

Those which subscribe to Image and Depth Image use these callbacks to identify objects within the
environment based on colour. One use of this is to identify the coloured objects we are looking for
within the environment. This is done within the ”Object Detection” node, which uses openCV to
identify contours of the desired colour (using Hue from the input image). We then sample a cached
depth image at the midpoint of this coloured object and use this with the robots pose, and a number of
other parameters to map the object into a real world position. This location is then marked in a
probability grid as a possible location for an object, with increasing likelihood the more hits we get.

As mentioned, this node uses the current Pose of the robot as part of the object location calculation, so
it must also subscribe to the pose callback from SLAM localizer.

The location is only an estimate because the depth image and colour image callbacks are not perfectly
synced up due to the concurrency of the nodes and callbacks. Additionally, the localisation can itself
have issues at times, meaning our actual robot position can deviate from it’s true position. This is why
we build up a probability grid of objects rather than simply marking them with 100% confidence. After
updating the probability grids, we threshold to remove any background noise / false positives, and then
identify the connected components. For each connected component, we create a marker and publish it
within the marker array, these are then identified as ”found”, which is the main intended behaviour of
the bot.

”Obstacle Detection” is another node that uses the images, and it works almost identically to the
Object Detection node. The only real difference comes with the marking of the objects, since we only
care about avoiding the objects meaning we can skip some steps for efficiency. Instead, we sample each
pixel within the identified object and convert this into a coordinate in an obstacle map which we will
publish for the frontier node to use later. The sampling and conversion is done the same way using a
cached depth image, and hence has the same issues. We chose to put this behaviour in a separate node
since we wanted to publish different data than the ”Object Detection” node. Additionally, because the
avoidance of blue squares is a very high priority behaviour, having this being the only responsibility of
a single node means that we will get quicker feedback on the matter. This was a very important design
decision, as the callback on the real-sense camera is very slow, and if we are moving forward in the
environment we need to identify any upcoming blue as quickly and accurately as possible.

2.1.2 Lidar

The other information we get from the robot is in the form of the 360 Lidar callback. We use this in 2
nodes: ”SLAM Localizer” and ”vision mapping”. SLAM Localizer is responsible for liaising the
information from the gmapping node we run within the launch file and converting this to a position in
the world using transforms. The gmapping runs off SLAM, which uses Lidar and the image callbacks to
find the location we have the highest probability of being at within the map, at the same time as
building up the map. We did implement this behaviour ourselves originally, using the ”Mapping” and
”Localizer” nodes, but we chose to use the built in gmapping for efficiency after testing our own
implementation. Both the custom and built in localsation nodes publish the same things, the current
map and the estimated pose.
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The ”Mapping” node uses the Lidar callback and uses the depth at each degree as the endpoint for
Bresenham’s Line Algorithm. This, along with our current pose, was then used to build up a map of
the environment as we moved through it.

The ”Localizer” node we built then uses image processing to identify where in the global map the robot
is. This works by converting the global map into a main large image and creating a smaller local area
image based on the Lidar callback we receive. We then scan this local image over the entire global map
image and find at which point the sub image is most similar. This worked incredibly well in terms of
accuracy, and we even discussed possible ways to improve this by addition additional probability scaling
based on current velocity, but the main issue was with the speed at which the image processing took
place. Therefore we decided to instead switch to using the build in SLAM which was far quicker given
the time frame available. More on the testing will be discussed later.

”Vision Mapping” is an additional node that we built to take into account the FoV (Field of View) of
the Turtlebot. This was created to ensure that the robot physically faces all the open space within the
environment. Since we can only detect the objects we are searching for within the scene using the
camera, we need to make frontiers based on the locations which we have not seen, not just those that
haven’t been mapped yet. To do this, we build up a map of the exact same size and location of the cost
map and mark the locations of the front 60 degrees of the Lidar (since we can’t see through / behind
objects like walls).

2.2 Decision Making

All the decision making is done as part of the frontier node. Since we have already processed most of
the input data, all we have to do is combine the different sources and make our decisions based of these.
We use the assumption that all the other nodes have worked correctly, meaning that we know exactly
which areas are safe to drive using the different maps, and the locations which need to be explored from
the vision mapping.

When this map receives the global map, we build a cost map using by dilating and blurring an image of
the map and converting this back into an occupancy grid. These are based on the size of the robot to
provide an accurate representation of the unsafe region, as well as giving proportionally higher weights
to regions extremely close to the wall, so we avoid them if possible during the pathfinding [Figure 2].
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Figure 2: Cost map inflation

The first step in the main loop is a flood fill from our current position in the cost map to the nearest
frontier. This frontier is based on the FoV map, so we combine these 2 maps to perform this. This gave
us the quickest way to identify the geometrically closest frontier. We then use this as a destination and
perform an A* search to find the shortest route to this location within the cost map, taking into
account safe and unsafe regions as explained above. If the robot identifies that it starts within an
unsafe region at this point, it will first pathfind to the closest safe region, and then again from this safe
location to the frontier, maximising the safety of the robot and environment before moving towards to
desired goal. This is because we considered this to be a more important behaviour than a slightly
quicker route. The path we get at the end is then sampled at 0.15m intervals to give a number of points
to drive between, each with location and desired direction that will take us through a quick and safe
route to a previously unseen location.

2.3 Action

When it comes to actually moving the robot, we assume that the path we have created will be efficient
and include all the intended behaviours. The path is made of Points, representing a series of goal
positions and orientations towards to closest frontier. The ”Movement” node is then responsible for
moving the robot along this path by publishing Twist messages to cmd vel to guide it along that path.
This is done by treating the path as a queue, first moving towards the nearest goal, and once within a
threshold of distance and orientation, we pop it from the queue and aim towards the next Point. The
actual velocity we provide to the robot is based on how close the target is to being in front of the robot,
and lerping the angular and linear velocity based on this angle. This is a rather simple node, because
we do all the preparation before hand, the only important choices are based on the ranges for the
velocity at each stage to balance an efficient speed whilst still providing accuracy.
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3 Discussion

3.1 Implementation

The mapping and frontier nodes were a logical starting point since we could use the ”teleop” command
to manually drive the robot and view how the robot mapping behaves based on these changes. Testing
and tuning could therefore be done on the single node and we could perfect these before moving onto
adding the autonomous behaviour. At this point, we moved onto using SLAM instead of our custom
localisation since the benefits of quick processing outweighed the hit to accuracy. Frontier and SLAM
were deliberately chosen after a discussion with my partner, as we wanted to create a solution that
could effectively work within any environment without existing knowledge or a map of the environment.
We knew at this stage that we would suffer from lower accuracy regarding the localisation, as well as
potentially taking longer to explore the environments compared to an implementation that could
calculate the shortest route through the entire map. However using SLAM ensures that the robot is not
overfit to a specific testing environment or map configuration, in addition to being far more adaptable
to randomly allocated objects, hence our decision. Using these mapping and frontier nodes, we could
then publish the shortest path to the nearest frontier based on the dynamically growing map.

Once we were publishing a path, we began implementation of a basic path follow in the ”Movement”
node. This uses the lerp function to make the linear speed and rotation proportional to the direction of
the robot. At this stage we didn’t implement the individual Point orientation goals since we add the
vision mapping towards the end of the project, so the movement node just drives the robot to the
points, regardless of orientation.

Once we had a robot that could crudely follow the path, we decided to add the image processing nodes.
The object detection node was first, since it wouldn’t change the behaviour of the robot. We
implemented it almost exactly as designed, making only minor improvements in the future. We
designed this to simply run in the background of the robot and mark the locations of the objects as we
move around the environment, since we only wanted the movement to be based on the frontier search.
This did mean we had to ensure the image processing techniques were efficient enough to not impact
the refresh rate, otherwise while the robot was turning we could have missed objects. As an alternative
to this, it’s possible to include the camera vision as part of the movement behaviour, and stop to turn
and look more confidently at the possible objects when they’re detected during a movement. This
would increase the accuracy of the actual object position, but has a number of other issues. Firstly, it
makes the movement behaviour vastly more complicated, requiring a state machine like architecture,
which is contradictory to our initial design. Additionally, it would hugely impact the speed at which
the robot would be able to complete it’s task, so we decided it would be more beneficial to have this
node quickly processing in the background.

We then implemented the obstacle detection node, which works very similar to the object detection but
we decided to keep this as a separate node. This is because the obstacles need to be taken into account
for the movement so the robot doesn’t drive over the blue tiles, so we publish a map of identified
objects for processing in the frontier node, when makes the map of traverse-able regions. This has to be
done extremely quickly, as the camera has a small FoV as well as slow refresh rate, so we decided to
keep this as a separate node with just this one behaviour to reduce processing time. Any other
configuration of this would result in a lower response rate to the blue tiles, other than simple stopping
movement if we saw blue tiles. Although having such a directly responsive behaviour has massive
implication for the robot behaviour as a whole, since it again results in a state machine type structure
which we had planned to avoid due to it being so susceptible to issues.
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At this stage we had a rough solution for the whole behaviour, so we did another loop through each of
the nodes to make improvements, such as improving cost map inflation, adding depth changing based
on height in an image and also adding heuristics to the pathfinding. We then noticed that the current
frontier search wouldn’t be able to fully view the whole map with the camera, so we decided to add the
FoV based frontier search by implementing the vision mapping node. This node was designed as an
additional input to the frontier, but also required the addition of orientation checking to each point
within the movement node so that we could ensure the robot was turning correctly at the end of a
path, rather than simply sitting at a frontier facing the wrong direction. This was a effective and
creative solution that fitted well into our existing architecture, giving us a complete solution that
followed a dynamic subsumption-like behaviour to complete that task within all the specific criteria.

As stated previously, we implemented all of the nodes and designed the full architecture using paired
programming. That being said, there were a few sections which one person took more of a lead. For
example, I was more leading on the image processing sections, such as with the Obstacle & Object
Detection nodes, as well as coming up with the idea of adding the FoV map to improve the search
behaviour to be more fitting to the task.

3.2 Testing

When it came to testing each of the nodes, we would implement the smallest measurable amount for
the current node and iteratively test these alongside the implementation. This was chosen because we
knew as we added more and more nodes it would become harder to understand the emergent behaviour,
and this meant we could fully understand each node and ensure it was working as intended before
moving on. We also knew that a large majority of the code would be very hard to quantify in terms of
performance, since the nodes are so interrelated. Therefore we used a combination of integration and
acceptance testing on the behaviour before committing satisfactory code and progressing onto new
sections. This was performed after running the

One of the most important parts of the testing was the use of RVIZ to view the various maps and paths
being built and calculated in real time. You can see all of these in our final solution, which provided
great insight into the different ”spaces” the robot would take into account for the decision making and
its understanding of the environment. We also used RVIZ for outputting identified objects and the
paths we intended to take at each section, as this would allow us to quickly compare the input data
with the processed data, and finally the outcomes of the processing, allowing quick identification of
issues or areas of improvement.

A few of the functions were quite simple to test, such as the A* pathfinding, or the util functions. With
these being purely mathematical functions, we just logged all the inputs and outputs to the console and
could quickly check these are working correctly rather than relying on deep behavioural understanding.
Although we knew that this wouldn’t be possible for all of the functions, which is why we opted for
paired programming for the entire project alongside the use of RVIZ to help identify and understand
the emergent behaviour.

Another useful part of the testing procedure was the use of openCV for the image processing. OpenCV
allows the various images we use for processing to be viewed in real time, which allowed us to visualise
the object and obstacle detection as the robot was moving throughout the environment. We would
check each step of the pipeline for these nodes, from masking and thresholding the original input
images to highlighting the centroids within the original image. This was vitally important in ensuring
the image processing techniques we used to remove noise and correctly identify the desired objects were
working correctly.
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3.3 Parameter Tuning

When it came to tuning exact values of parameters and constants within the code, this again took a
highly iterative approach, with constant changes and improvements as we implemented various sections.
There were a few constants that we need to keep the same across multiple files, such as physical
characteristics of the robot and camera, which we kept in a helper file so we could change all instances
of them in a single point as to not forget any. These can be seen within the ”constants.py” file of the
”minitask5/util” subpackage, which remained consistent for the majority of the project.

The other parameters however, such as image processing techniques and frontier calculations, took a lot
of tuning. The image processing started with us looking at colour ranges for masks and thresholds for
converting to binary. Size we know that the test environment, we knew that the only red and green
would be the actual objects we were trying to detect, making it possible for us to manually pick the hue
colour ranges easily. We considered using AI on the input images of the objects to create a highly
accurate model for identifying the required objects given input images we could take around the scene,
but this was completely unnecessary since we were able to use HSV to such success.

There were a few other image processing parameters that required tuning across the various nodes,
namely in the size and shapes of kernels. Kernels were used to erode noise in the background of input
images, as well as inflate the cost map. The cost map inflation kernels were best tuned to be
proportional to the size of the physical robot, but we did investigate smaller and larger sizes for this. A
larger kernel resulted in the robot being overly cautious, taking a much longer route around edges in
addition to not traversing through narrow corridors. Alternatively, have the kernel too small resulted in
the robot clipping the walls at corners or whilst turning. Based on both of these, and observations
about the robots behaviour, we did expand the inflation kernel to be a single cell larger than the
physical robot size for the map inflation, since we knew there could be error in localisation and
odometry, and this worked exceptionally well for most cases.

The object detection kernels were a little more complicated to tune. Since the size of the actual objects
could change depending on the distance and angle at which we were looking at them, we had to find the
balance of a large enough kernel to remove incorrectly identified colours as part of the threshold, but
not so big as to remove true positives. Therefore, we had to adjust the image processing to only
consider objects detected within the advised safe bounds of the camera (as provided on the real-sense
website). Given these bounds on accuracy, we could determine the relative sizes of the objects at the
upped bound, and use this to guide our tuning to aggressively remove all the background noise without
removing the true objects. We also looked at training a model for this, providing some labelled images
and finding the perfect kernel size, but since we wanted the camera to only function without the
recommended bounds anyway to ensure the depth reading was accurate to calculate object position, we
decided to just tune this in ourselves. After adapting our code to the recommended depth ranges of the
camera, we learnt that the camera was only accurate within 2%, which caused some unavoidable leeway.

There were then only a few other parameters that required tuning for our solution to be complete.
These were things like thresholds for acceptable speeds of movement, or radius for conditions being
met. These were much harder to tune, since they could only really be tested with acceptance testing by
watching the robot perform within the environment. The method we took for finding the best values
for these was taking each of the values to the most extreme we thought it could still perform and
evaluating the changes. This would then be repeated a few times until we hit a value for these
parameters that was satisfactory for the intended robot behaviour. For example, we had values to
determine when the robot was close enough to a point in the path for it to be considered visited. This
included euclidean distance and difference in angle. We started with these both as 0, so the robot had
to be in the perfect position for this to be accepted, but we found that this was far too precise and
resulted in the robot going back and forth countless times to perfectly align itself. So we increase this
to 0.5m, which had its own issues, and after a few iterations arrived at values of 0.1m and 20 degrees.
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